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Preface

Lorentz space is a mathematical model developed specifically to explain event in the fields of electricity
and magnetism. This model first emerged in the late 19th century, especially with the development of
James Clerk Maxwell’s theory of electromagnetism.

However, this theory was placed in a broader context with Albert Einstein’s particular theory of
relativity. Einstein suggested that electromagnetic fields can be perceived in different ways by different
observers and that this perception may vary depending on the speed of moving objects. These ideas can be
expressed in mathematical transformations known as Lorentz transformations. Mathematician Hermann
Minkowski developed Minkowski space in the early 20th century. Based on Albert Einstein’s theory of
relativity, Minkowski suggested that time and space are interdependent, and this dependence can be
expressed in a four-dimensional structure.

Lorentz space and Minkowski space have similar properties but different concepts and mathematical
structures. Lorentz space is a concept used for the mathematical modeling of space-time in the special
theory of relativity. Lorentz space represents four-dimensional space-time and is based on the special
theory of relativity, which states that measurements of time depend on the movement of the observer.

Minkowski space is a four-dimensional mathematical model of space and time and is used in special
relativity theory. It states that, like the Lorentz space, measurements of time and space depend on the
movement of the observer.

That is, Lorentz space and Minkowski space are not the same space, but they use similar mathematical
structures and concepts. Minkowski space is a special type of Lorentz space, and Lorentz space is a
concept used in the special theory of relativity.

Metric concepts are defined according to the inner product after defining the inner product in Lorentz
space. Since the Lorentz metric is not positive definite like the Euclidean metric, this situation occurs
the vector diversity. Vectors are classified as timelike, spacelike, and null vectors in Lorentz space. This
diversity among vectors has led to various angles, triangles, and all concepts in the metric sense. For this

reason, it is very difficult to ensure the integrity of the issue related to the Lorentz space.
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This book, which is a guide about the Minkowski space, has been prepared with two main components
in mind. While the first one of them is detecting and correcting many present signs, vectors, and angle
errors from the most basic to the recent studies in Minkowski space, the second one is the existence of
the original parts. Generally, the studies were not paid attention to the vector types and ignored the
harmony of the inner and vector products. There are also similar issues with curve types. Most of the
results were given without paying attention to the curve types. In this book, we stated the causes of this
literature errors and then made the essential corrections. To avoid disturbing the integrity of the subject,
the original parts are not given in separate sections. According to the flow, these parts are highlighted
without reference in the relevant section.

This book consists of the topics of linear algebra, differential geometry, analytic geometry, theory of
curves, theory of surfaces, kinematics and manifolds related to Lorentz-Minkowski space. Lorentz space is
an essential field that should know for all researchers interested in mathematics and especially geometry.
There are fundamental titles that researchers will encounter when they study on Lorentz space. Some of
these are definitions of angles between vectors, triangle classifications, cross-product, and the concept of
the angle between vectors. But these parts are unclear in the Lorentz field. This book has been prepared
as a detailed research book that eliminates confusion and unclarity.

To summarize, the two most important features of the book for the audience are as follows:

1) In this work, which was written with the same notation from beginning to end, the confusion to be
experienced during the literature review has been minimized.

2) The original parts of the book will form the basis of future work.

This book consists of 10 chapters. The first chapter gives information about the purpose of writing the
book and its content. The second chapter provides the information we need to define the Lorentz metric
under the title of scalar product space.

The third chapter is in which the Lorentz space is introduced in detail. Vector classification, properties
provided by vectors are given. Which vectors can be orthogonal to each other under what conditions is
examined as a separate topic in each of the spaces R?,R?, R3 and R?. Schwartz and triangle inequality is
explained in an explanatory and systematic way for different types of triangles.

The most problematic angle and triangle concepts for Lorentz space are examined in detail in the
fourth part of the study. This section explains the errors in the literature with their corrected reasons. This
section examines the space R? and Lorentz plane under separate headings. All possible types of triangles
and all right triangles are given. These triangle hyperbolic sine and cosine theorems are also explained
one by one. In addition, the pedoe inequality, another original content of the book, has been examined for
all triangles. So, the angle is an important part that will end the triangle confusion in Lorentz space.

The content of the fifth chapter is the analytical geometry part. In this section, the equations of
timelike and spacelike lines are given. Different from the line equation in the literature, equations were
found, and their reasons were explained. In addition, the vertical projection of different types of vectors

on each line is examined. At the same time, the density of the line is given in different vector types.
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The sixth chapter contains the linear algebra part. Under this title, vector products, transformations,
and Lorentz matrices are examined. The vector multiplication part is written clearly and simply to
eliminate confusion in the literature. All possible situations are given with their results. The harmony
between the inner product and vector product, which is not considered in the literature, is emphasized in
this section. In which sources errors are found are explained with their reasons. In addition, information
on special transformations and isometries is also given.

The seventh chapter is a comprehensive section examining curves in Lorentz space. In this section,
curves in the space IR are defined, and their properties are given. All special cases of curves are examined
separately in the spaces R}, R} , and R?. Minkowski frenet formulas are given explicitly for timelike,
spacelike, and null curves. All possibilities for null curves are evaluated with their results. In addition,
clear titles are given for the involute evolute curve pair and the Bertrand curve pair. It has been explained
that not every curve can be an involute evolute curve or a Bertrand curve pair. These errors are explained
and special curve definitions are given with the original additions in this part of the book.

In the eighth chapter, information about surfaces is given in Minkowski space. The surface
nomenclature is given carefully. All questions, such as which conditions are required on which surface
and how vectors can be obtained, are answered in detail. Many topics, such as shape operator, gaussian
transformation, and basic forms, are examined individually for each surface. The differences between
them are noted.

In the ninth chapter, the concept of the manifold is defined. Manifold information on sub-manifold
and hypersurface are examined in sub-headings. The tenth chapter contains the title of kinematics
in Minkowski space. One parameter motion, Euler-Savary formulas, pole curves are expressed under
the headings spacelike and timelike. Lorentz matrix multiplication, given in the previous sections, is
combined with kinematics in this section. Therefore, spherical kinematic geometry is explained with the

help of Lorentz matrix multiplication with its results in the space R3.

Prof. Dr. Salim YUOCE
Yildiz Technical University
Yiice Research Group

sayuce@yildiz.edu.tr
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